Constellation-X
IGM and Galactic Halo Science

Michael Shull University of Colorado

Boulder, CO Feb 21, 2008

IGM, WHIM, Missing Baryons Joint UV/X-ray Program

- We have accounted for ~50% of low-z baryons

Are the rest (50%) in hotter gas (1-3 \times 10⁶ K)?

Crucial test of baryon shocks in LSS

- *10% in galaxies/groups, ~30% in Lyα forest, ~10% in OVI-bearing WHIM (10⁵⁻⁶ K)
- * HST/FUSE found ~100 WHIM/OVI absorbers
- There are significant systematic uncertainties

X-ray absorbers (Con-X) are needed to complete the baryon surveys and to understand feedback to IGM in winds

Probed by X-ray lines, broad Lyα

Baryon Census (low-z)

Major Cosmological Issues

- (1) Are models of large-scale structure correct? (baryons in Cosmic Web, shocked filaments)
- (2) What are thermodynamics of Cosmic Web?
- (3) How strong is feedback from galaxy winds?
- (4) What is the extent of gaseous halos?
- (5) How does gas accrete from IGM into halos?

Hubble-COS

~250 GTO orbits for IGM science (over 3 yrs)

Much more time available + new HST Treasury Projects (cycles 18-20)

Simulations of Structure Formation

Oppenheimer, Davé, & Finlator (Princeton Univ.)

IGM Evolution from $z = 8 \rightarrow 1.5$

COS-GTO Studies of IGM

253 Hubble Orbits

 $\Delta z \approx 10$ pathlength

Large-Scale Structure in Baryons

Cloud sizes, Lyα, metal lines, blazars (broad Lyα absorbers), starburst wind outflows, galaxy halos, high-velocity clouds

100 orbits 18 QSOs

WHIM in Cosmic Web and Halos

High ions (O IV/V/VI, N V, C IV), BLAs, survey redshifts z out to 0.67

100 orbits 17 QSOs

Great Wall Tomography

29 orbits, 4 QSOs

He II Reionization Epoch

27 orbits, 4 AGN

Hubble/STIS Spectrum of low-z Lyα absorbers toward the blazar PKS 2005-489

Ly α absorbers N_{HI} = 10^{13-15} cm⁻² M_H $\approx 10^{8-9}$ M_{sun}

(with ionization correction $f_{HI} \approx 10^{-4}$ to 10^{-5} for HI)

One Lyα line every 2300 km/s (dN/dz ≈ 130)

(EW > 30 mA)

Many more at 10 mA

OVI absorbers (low-z IGM)

Broad Lyα Absorber

BLA system (z=0.0878) toward Mrk 876

Good agreement between Lyman-series and curve of growth

 $b_{Lya,b} \sim b_{COG} = 44 \text{ km/s}$

 α wedge for $\delta = 32.50 \pm 5.0^{\circ}$

 $\mathcal{N}=650, \beta=1.73\pm0.04$

 $\mathcal{N}=83, \beta=1.98\pm0.11$

Danforth & Shull 2008, ApJ, 679 in press (May 20) *arXiv:0709.4030*

Galaxy/Ly α absorbers (PKS 2155-304) Group at z \approx 0.053 Shull et al. (1998, 2004)

Chandra, HST, and FUSE data

X-ray (O VIII absorber?) - Fang et al 2005, 2008

Nearest-galaxy distributions

Stocke et al. (2006)

OVI absorbers track galaxies:

O VI absorbers lie within 800 kpc of L* galaxies

& within 200 kpc of 0.1 L* galaxies

Summary of Results:

We have accounted for ~50% of the baryons

- 10% in collapsed structures (galaxies, clusters)
- 30% in warm (10^4 K) photoionized gas (Ly α)
- 10% in hot (10^{5.5} K) gas (O VI ultraviolet lines)

Other 50% may be in even hotter (106 K) gas

Need ConX The hot (OVI) gas is close to galaxies, and thus is a reservoir for low-Z gas infall

- Within 200 kpc of 0.1 L* galaxies (outflows?)
- Cooling \Rightarrow 0.1 M_{sun}/yr gaseous infall to halos?

IGM Absorber Redshift Evolution

(We see a hint of this already)

Are shocked WHIM filaments stronger at low z?

Shull & Danforth 2008

IGM/Halo Hubble Key Project (sample)

500 orbits: High-S/N Survey (R = 20,000)

G130M/G160M (50 targets, 10 orbits each, S/N = 30-40) Large redshift coverage ($\Delta z \approx 20$) 10,000 Ly α , 500 O VI absorbers, many metal lines

200 orbits: mid-UV spectral survey (z = 0 to 1.5)

Baryons & metal evolution out to z > 1

100 orbits: low-resolution survey

100 AGN targets with G140L (R = 3000)

Cosmology (power-spectra, voids, web geometry)

Survey for DLA and Lyman-limit systems

Plans for Con-X in IGM/Halo Studies

Need sensitivity and spectral resolution below I keV to trace key lines (O VII, O VIII, Ne, N, C ions). Background AGN with $F \approx 10^{-12}$ erg cm⁻² s⁻¹ (0.1-0.2 mCrab)

Tie X-ray absorbers to the UV lines (Lyα, O VI, N V, C III, C IV, Si III, Fe III, etc) - wavelength scale ±20 km/s?

R = 1500 (minimum) and 3000 (goal) in order to match 100 km/s thermal line widths and increase sensitivity to 10^6 K gas with $N_{OVII} \ge 10^{14}$ cm⁻²

 $\Delta v_{FWHM} = (53.5 \text{ km/s}) T_6^{1/2}$

Good News: We should have ~10⁴ Lyα lines and perhaps 500 O VI lines as "UV signposts"